If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50(x^2)+350=40(x^2)+450
We move all terms to the left:
50(x^2)+350-(40(x^2)+450)=0
We get rid of parentheses
50x^2-40x^2-450+350=0
We add all the numbers together, and all the variables
10x^2-100=0
a = 10; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·10·(-100)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*10}=\frac{0-20\sqrt{10}}{20} =-\frac{20\sqrt{10}}{20} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*10}=\frac{0+20\sqrt{10}}{20} =\frac{20\sqrt{10}}{20} =\sqrt{10} $
| 0.5x-3=3/2x+4 | | 05x-3=3/4x+4 | | 12356=2c | | 15+5=-2(2x-10) | | 3f-10/2=f | | 2/3(3x+9=2(2x+6) | | 3(r+5)=-4r+8 | | 65-2.50=55-2x | | m(15+1)+7=11m(15-9)+5m | | -1x4X+4=76 | | 4x+4x-24=0 | | 1/5=1/3+d | | 8x2−6=194 | | -14+39=-5(x+1) | | 5(-1/2x)=-9 | | 2x-6+2x-1=13 | | 24x^2+13x=41 | | 3(x+2)3=5x-2(-4+x) | | -3x+14=18-5x | | (x−12)2=94 | | 83=35^x | | -14+38=-4(x+5) | | 52=-x | | 0.5(3x+87)=1.5x+43.5 | | 2/3(3x+9=4(x-15) | | -13+38=-4(x+5) | | 5(x-9)-9=-54 | | -7-3x-1=17 | | 4x-11=7+20 | | 6x^2−6x−2=0 | | 5t+16=6t-5 | | 1-4x+4=-1+6x-7-7 |